Tutorial¶
The following pages show an example analysis with emgfit broken down into the essential steps. Many of the more advanced features of emgfit are left out or only briefly mentioned in passing, so feel free to explore the documentation further!
This tutorial was created in the Jupyter Notebook emgfit_tutorial.ipynb
which can be found in the emgfit/emgfit/examples/tutorial/
directory of the emgfit distribution. Feel free to copy the tutorial folder to a different directory (outside of the emgfit/
directory!) and follow along with the tutorial by actually running the code. You can also use this notebook as a template for your own analyses (consider removing some of the explanations). It is recommended to use a separate
notebook for each spectrum to be fitted. This enables you to go back to the notebook at any time and check on all the details of how the fits were performed.
emgfit is optimized to be run within Jupyter Notebooks. There is dozens of decent introductions to using Jupyter Notebooks, a nice overview can e.g. be found at https://realpython.com/jupyter-notebook-introduction/. Naturally, the first step of an analysis with emgfit is starting up your notebook server by running jupyter notebook
in your command-line interface. This should automatically make the Jupyter interface pop up in a browser window. From there you can navigate to different
directories and create a new notebook (new
panel on the top right) or open an existing notebook (.ipynb files).
Import the package¶
Assuming you have setup emgfit following the installation instructions, the first step after launching your Jupyter Notebook will be importing the emgfit package:
[1]:
### Import fit package
import emgfit as emg
How to access the documentation¶
Before we actually start processing a spectrum it is important to know how to get access to emgfit’s documentation. There is multiple options for this:
The html documentation can be viewed in any browser. It contains usage examples, detailed explanations of the crucial components and API docs with the different modules and all their methods. The search option and cross references enable quick and easy browsing for help.
Once you have imported emgfit you can access the docs directly from the Jupyter Notebook:
print all available methods of e.g. the spectrum class by running
dir(emg.spectrum)
print documentation of a method using
help()
, e.g. the docs of theadd_peak
method are printed by runninghelp(emg.spectrum.add_peak)
in a code cellkeyboard shortcuts can be even more convenient:
Use
TAB
to get suggestions for auto-completion of method and variable namesPlace the cursor inside the brackets of a function/method and press
SHIFT
+TAB
to have a window with the function/method documention pop upPressing the
H
key inside a Jupyter Notebook shows you all available keyboard shortcuts)
Import data¶
The following code imports the mass data and creates an emgfit spectrum object called spec
. The input file must be a TXT or CSV-file following the format of MAc’s hist export mode. From here on the analysis of the spectrum proceeds by calling the various methods on our spectrum object spec
.
[2]:
### Import mass data, plot full spectrum and indicate chosen fit range
filename = "2019-09-13_004-_006 SUMMED High stats 62Ga"
skiprows = 38 # number of header rows to skip upon data import
m_start = 61.9243 # low-mass cut off
m_stop = 61.962 # high-mass cut off
spec = emg.spectrum(filename+'.txt',m_start,m_stop,skiprows=skiprows)

Add peaks to the spectrum¶
This can be done with the automatic peak detection spectrum method) and/or by manually adding peaks (add_peak spectrum method). The plots shown below are (optional) outputs of the detect_peaks method and depicts the different stages of the automatic peak detection.
All information about the peaks associated with the spectrum are compiled in the peak properties table. The table’s left-most column shows the respective peak indeces. In all fits, the peaks’ x_pos
will be used as the initial values for the peak centroid parameters mu
(to be exact: mu
marks the centroid of the underlying Gaussians).
[3]:
### Detect peaks and add them to spectrum object 'spec'
spec.detect_peaks() # automatic peak detection
#spec.add_peak(61.925,species='?') # manually add a peak at x_pos = 61.925u
#spec.remove_peak(peak_index=0) # manually remove the peak with index 0




Peak properties table after peak detection:
x_pos | species | comment | m_AME | m_AME_error | extrapolated | fit_model | cost_func | red_chi | area | area_error | m_fit | rel_stat_error | rel_recal_error | rel_peakshape_error | rel_mass_error | A | atomic_ME_keV | mass_error_keV | m_dev_keV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 61.927800 | ? | - | None | None | False | None | None | None | None | None | None | None | None | None | None | None | None | None | None |
1 | 61.932021 | ? | - | None | None | False | None | None | None | None | None | None | None | None | None | None | None | None | None | None |
2 | 61.934369 | ? | - | None | None | False | None | None | None | None | None | None | None | None | None | None | None | None | None | None |
3 | 61.943618 | ? | - | None | None | False | None | None | None | None | None | None | None | None | None | None | None | None | None | None |
4 | 61.946994 | ? | - | None | None | False | None | None | None | None | None | None | None | None | None | None | None | None | None | None |
5 | 61.949527 | ? | - | None | None | False | None | None | None | None | None | None | None | None | None | None | None | None | None | None |
6 | 61.956611 | ? | - | None | None | False | None | None | None | None | None | None | None | None | None | None | None | None | None | None |
7 | 61.958997 | ? | - | None | None | False | None | None | None | None | None | None | None | None | None | None | None | None | None | None |
Assign identified species to the peaks (optional)¶
Although this step is optional, it is highly recommended that it is not skipped. By assigning species labels to your peaks you do not only gain more overview over your spectrum, but also allow for literature values to be automatically fetched from the AME database and entered into the peak properties table. Once a species
label has been assigned, you can refer to this peak not only via its index but also via the label.
The assign_species method allows to assign species identifications either to a single selected peak or to all peaks at once. Here the second option was used by passing a list of species labels to assign_species
. The list must have the same length as the number of peaks associated with the spectrum object. If there are peaks whose labels should not be changed (e.g. unidentified peaks), simply insert None
as a placeholder at the
corresponding spots (as done for peaks 2 and 7 below). The syntax for species labels follows MAc’s :-Notation. It is important not to forget to subtract the number of electrons corresponding to the ion’s charge state! Otherwise the analysis would mistakenly proceed with the atomic instead of the ionic mass. Note that currently only singly-charged species are supported by emgfit. Tentative peak identifications can be indicated by adding a '?'
to the end of the species string. In this case
the literature values are not fetched. The user can also define custom literature values (e.g. to handle isomers or if there are recent measurements that have not entered the AME yet). For more details see the documentation of assign_species
.
This is also a good point in time to add any comments to the peaks using the add_peak_comment method. These comments can be particularly helpful for the post-processing in Excel since they are written into the output file with the fit results (as is the entire peak properties table). More general comments that concern the entire spectrum can instead be added with the add_spectrum_comment method.
[4]:
### Assign species and add peak comments
spec.assign_species(['Ni62:-1e','Cu62:-1e?',None,'Ga62:-1e','Ti46:O16:-1e','Sc46:O16:-1e','Ca43:F19:-1e',None])
spec.add_peak_comment('Non-isobaric',peak_index=2)
spec.show_peak_properties() # check the changes by printing the peak properties table
Species of peak 0 assigned as Ni62:-1e
Species of peak 1 assigned as Cu62:-1e?
Species of peak 3 assigned as Ga62:-1e
Species of peak 4 assigned as Ti46:O16:-1e
Species of peak 5 assigned as Sc46:O16:-1e
Species of peak 6 assigned as Ca43:F19:-1e
Comment of peak 2 was changed to: Non-isobaric
x_pos | species | comment | m_AME | m_AME_error | extrapolated | fit_model | cost_func | red_chi | area | area_error | m_fit | rel_stat_error | rel_recal_error | rel_peakshape_error | rel_mass_error | A | atomic_ME_keV | mass_error_keV | m_dev_keV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 61.927800 | Ni62:-1e | - | 61.927796 | 4.700000e-07 | False | None | None | None | None | None | None | None | None | None | None | 62.0 | None | None | None |
1 | 61.932021 | Cu62:-1e? | - | NaN | NaN | False | None | None | None | None | None | None | None | None | None | None | NaN | None | None | None |
2 | 61.934369 | ? | Non-isobaric | NaN | NaN | False | None | None | None | None | None | None | None | None | None | None | NaN | None | None | None |
3 | 61.943618 | Ga62:-1e | - | 61.943641 | 6.940000e-07 | False | None | None | None | None | None | None | None | None | None | None | 62.0 | None | None | None |
4 | 61.946994 | Ti46:O16:-1e | - | 61.946993 | 1.760001e-07 | False | None | None | None | None | None | None | None | None | None | None | 62.0 | None | None | None |
5 | 61.949527 | Sc46:O16:-1e | - | 61.949534 | 7.320000e-07 | False | None | None | None | None | None | None | None | None | None | None | 62.0 | None | None | None |
6 | 61.956611 | Ca43:F19:-1e | - | 61.956621 | 2.440018e-07 | False | None | None | None | None | None | None | None | None | None | None | 62.0 | None | None | None |
7 | 61.958997 | ? | - | NaN | NaN | False | None | None | None | None | None | None | None | None | None | None | NaN | None | None | None |
Select the optimal fit model and perform the peak-shape calibration¶
Next we need to find both a fit model and a set of model parameters that capture the shape of our peaks as well as possible. In emgfit both of this is achieved with the determine_peak_shape method. Once the peak-shape calibration has been performed all subsequent fits will be performed with this fixed peak-shape, by only varying the peak centroids, amplitudes and optionally the uniform-baseline parameter bkd_c
.
By default determine_peak_shape
performs an automatic model selection in which the shape-calibrant peak is first fitted with a pure Gaussian and then with Hyper-EMG functions with an increasing number of expontential tails on the left and right. The algorithm selects the fit model which yields the smallest \(\chi^2_\text{red}\) without having any of the tail weight parameters \(\eta\) compatible with zero within their uncertainty. Alternatively, the auto-model selection can be
turned off with the argument vary_tail_order=False
and the fit model can be selected manually with the fit_model
argument.
Once the best fit model has been selected the method proceeds with the determination of the peak-shape parameters and shows a detailed report with the fit results.
Some recommendations:
It is recommended to do the peak-shape calibration with a chi-squared fit (default) since this yields more robust results and more trusworthy parameter uncertainty estimates. Check the method docs for info on performing the shape calibration with binned maximum likelihood estimation.
Ideally the peak-shape calibration is performed on a well-separated peak with high statistics. In this example, the
Ca43:F19:-1e
peak was selected as peak-shape calibrant. Since the default fit range includes a smaller peak on the right, the range was manually reduced to 0.45u with thex_fit_range
argument. If unavoidable, the peak-shape determination can also be performed on partially overlapping peaks since emgfit ensures identical shape parameters for all peaks being fitted.
[5]:
## Peak-shape calibration with default settings, including automatic model selection:
#spec.determine_peak_shape(species_shape_calib='Ca43:F19:-1e')
## Peak-shape calibration with user-defined fit range:
spec.determine_peak_shape(species_shape_calib='Ca43:F19:-1e',x_fit_range=0.0045)
## Peak-shape calibration with user-defined fit model:
#spec.determine_peak_shape(species_shape_calib='Ca43:F19:-1e',fit_model='emg12',vary_tail_order=False)
##### Determine optimal tail order #####
### Fitting data with Gaussian ###---------------------------------------------------------------------------------------------


Gaussian-fit yields reduced chi-square of: 45.57 +- 0.13
### Fitting data with emg01 ###---------------------------------------------------------------------------------------------


emg01-fit yields reduced chi-square of: 13.79 +- 0.13
### Fitting data with emg10 ###---------------------------------------------------------------------------------------------


emg10-fit yields reduced chi-square of: 45.96 +- 0.13
### Fitting data with emg11 ###---------------------------------------------------------------------------------------------


emg11-fit yields reduced chi-square of: 2.6 +- 0.13
### Fitting data with emg12 ###---------------------------------------------------------------------------------------------


emg12-fit yields reduced chi-square of: 1.22 +- 0.13
### Fitting data with emg21 ###---------------------------------------------------------------------------------------------


emg21-fit yields reduced chi-square of: 1.47 +- 0.13
### Fitting data with emg22 ###---------------------------------------------------------------------------------------------


emg22-fit yields reduced chi-square of: 0.96 +- 0.13
### Fitting data with emg23 ###---------------------------------------------------------------------------------------------


WARNING: p6_eta_m1 = 0.891 +- 2.086 is compatible with zero within uncertainty.
This tail order is likely overfitting the data and will be excluded from selection.
WARNING: p6_eta_m2 = 0.109 +- 2.086 is compatible with zero within uncertainty.
This tail order is likely overfitting the data and will be excluded from selection.
WARNING: p6_eta_p1 = 0.443 +- 6.292 is compatible with zero within uncertainty.
This tail order is likely overfitting the data and will be excluded from selection.
WARNING: p6_eta_p2 = 0.458 +- 4.68 is compatible with zero within uncertainty.
This tail order is likely overfitting the data and will be excluded from selection.
WARNING: p6_eta_p3 = 0.099 +- 6.292 is compatible with zero within uncertainty.
This tail order is likely overfitting the data and will be excluded from selection.
emg23-fit yields reduced chi-square of: 0.98 +- 0.13
### Fitting data with emg32 ###---------------------------------------------------------------------------------------------


WARNING: p6_eta_m3 = 0.007 +- 0.1 is compatible with zero within uncertainty.
This tail order is likely overfitting the data and will be excluded from selection.
emg32-fit yields reduced chi-square of: 0.98 +- 0.13
### Fitting data with emg33 ###---------------------------------------------------------------------------------------------


WARNING: p6_eta_m1 = 0.872 +- 4.49 is compatible with zero within uncertainty.
This tail order is likely overfitting the data and will be excluded from selection.
WARNING: p6_eta_m2 = 0.119 +- 4.168 is compatible with zero within uncertainty.
This tail order is likely overfitting the data and will be excluded from selection.
WARNING: p6_eta_m3 = 0.009 +- 4.49 is compatible with zero within uncertainty.
This tail order is likely overfitting the data and will be excluded from selection.
WARNING: p6_eta_p1 = 0.442 +- 12.792 is compatible with zero within uncertainty.
This tail order is likely overfitting the data and will be excluded from selection.
WARNING: p6_eta_p2 = 0.461 +- 9.645 is compatible with zero within uncertainty.
This tail order is likely overfitting the data and will be excluded from selection.
WARNING: p6_eta_p3 = 0.097 +- 12.792 is compatible with zero within uncertainty.
This tail order is likely overfitting the data and will be excluded from selection.
emg33-fit yields reduced chi-square of: 0.99 +- 0.14
##### RESULT OF AUTOMATIC MODEL SELECTION: #####
Best fit model determined to be: emg22
Corresponding chi²-reduced: 0.96
##### Peak-shape determination #####-------------------------------------------------------------------------------------------


Model
(Model(constant, prefix='bkg_') + Model(emg22, prefix='p6_'))Fit Statistics
fitting method | least_squares | |
# function evals | 18 | |
# data points | 123 | |
# variables | 11 | |
chi-square | 107.821079 | |
reduced chi-square | 0.96268820 | |
Akaike info crit. | 5.79952458 | |
Bayesian info crit. | 36.7335525 |
Variables
name | value | standard error | relative error | initial value | min | max | vary | expression |
---|---|---|---|---|---|---|---|---|
bkg_c | 0.93751705 | 0.21448563 | (22.88%) | 0.1 | 0.00000000 | 4.00000000 | True | |
p6_amp | 0.95184911 | 0.00599045 | (0.63%) | 0.8422080000000001 | 1.0000e-20 | inf | True | |
p6_mu | 61.9566396 | 4.0323e-06 | (0.00%) | 61.95661076349748 | 61.9466108 | 61.9666108 | True | |
p6_sigma | 8.3414e-05 | 2.9557e-06 | (3.54%) | 8.68e-05 | 0.00000000 | 0.00508680 | True | |
p6_theta | 0.72471396 | 0.02349105 | (3.24%) | 0.5 | 0.00000000 | 1.00000000 | True | |
p6_eta_m1 | 0.92019054 | 0.02313117 | (2.51%) | 0.85 | 0.00000000 | 1.00000000 | True | |
p6_eta_m2 | 0.07980946 | 0.02313117 | (28.98%) | 0.15000000000000002 | 0.00000000 | 1.00000000 | False | 1-p6_eta_m1 |
p6_tau_m1 | 4.4900e-05 | 5.8778e-06 | (13.09%) | 3.1e-05 | 1.0000e-12 | 0.05000000 | True | |
p6_tau_m2 | 1.7683e-04 | 2.4817e-05 | (14.03%) | 0.00031 | 1.0000e-12 | 0.05000000 | True | |
p6_eta_p1 | 0.79009179 | 0.04493382 | (5.69%) | 0.85 | 0.00000000 | 1.00000000 | True | |
p6_eta_p2 | 0.20990821 | 0.04493382 | (21.41%) | 0.15000000000000002 | 0.00000000 | 1.00000000 | False | 1-p6_eta_p1 |
p6_tau_p1 | 1.2412e-04 | 1.3320e-05 | (10.73%) | 3.1e-05 | 1.0000e-12 | 0.05000000 | True | |
p6_tau_p2 | 4.0762e-04 | 5.4796e-05 | (13.44%) | 0.000372 | 1.0000e-12 | 0.05000000 | True |
Correlations (unreported correlations are < 0.100)
p6_eta_m1 | p6_tau_m2 | 0.9505 |
p6_eta_p1 | p6_tau_p2 | 0.9227 |
p6_theta | p6_tau_p1 | 0.8417 |
p6_sigma | p6_tau_m1 | -0.8158 |
p6_eta_m1 | p6_tau_m1 | 0.7745 |
p6_tau_p1 | p6_tau_p2 | 0.7729 |
p6_eta_p1 | p6_tau_p1 | 0.7297 |
p6_tau_m1 | p6_tau_m2 | 0.7147 |
p6_mu | p6_tau_m1 | 0.7090 |
p6_mu | p6_eta_m1 | 0.6226 |
p6_sigma | p6_theta | 0.6097 |
p6_mu | p6_tau_m2 | 0.5369 |
p6_sigma | p6_tau_p1 | 0.5313 |
p6_mu | p6_theta | 0.5166 |
p6_theta | p6_tau_p2 | 0.4898 |
bkg_c | p6_tau_m2 | -0.4616 |
p6_sigma | p6_eta_m1 | -0.4114 |
bkg_c | p6_tau_p2 | -0.4083 |
p6_sigma | p6_tau_m2 | -0.4033 |
bkg_c | p6_eta_m1 | -0.3728 |
p6_mu | p6_tau_p1 | 0.3425 |
p6_theta | p6_eta_p1 | 0.3425 |
p6_mu | p6_sigma | -0.2865 |
bkg_c | p6_eta_p1 | -0.2755 |
p6_mu | p6_tau_p2 | 0.2750 |
p6_tau_m1 | p6_tau_p1 | -0.2464 |
p6_sigma | p6_tau_p2 | 0.2342 |
bkg_c | p6_mu | -0.2259 |
bkg_c | p6_tau_m1 | -0.2253 |
p6_theta | p6_tau_m1 | -0.1926 |
p6_mu | p6_eta_p1 | 0.1784 |
bkg_c | p6_tau_p1 | -0.1740 |
bkg_c | p6_amp | -0.1418 |
p6_tau_m2 | p6_tau_p2 | 0.1390 |
p6_sigma | p6_eta_p1 | 0.1320 |
p6_eta_m1 | p6_tau_p2 | 0.1272 |
Determine A_stat_emg for subsequent stat. error estimations (optional)¶
The statistical uncertainties of Hyper-EMG fits are estimated using the equation:
\(\sigma_{stat} = A_{stat,emg} \cdot \frac{\mathrm{FWHM}}{\sqrt{N_{counts}}}\)
where \(\mathrm{FWHM}\) and \(N_{counts}\) refer to the full width at half maximum and the number of counts in the respective peak.
By default a of value \(A_{stat,emg} = 0.52\) will be used for Hyper-EMG models (for Gaussians \(A_{stat,G}=0.425\)).
However, \(A_{stat,emg}\) depends on the peak-shape and can deviate from the default value. Therefore, the determine_A_stat_emg
method can be used to estimate \(A_{stat,emg}\) for the specific peak shape in the spectrum. This is done by fitting many simulated spectra created via bootstrap re-sampling from a reference peak in the spectrum. The reference peak should be well-separated and have decent statistics (e.g. the peak-shape calibrant). For details on how \(A_{stat,emg}\) is
estimated see the docs of determine_A_stat_emg.
This method will typically run for ~10 minutes if N_spectra=1000
(default) is used. Since this is only for demonstration purposes the number of bootstrapped spectra generated for each data point (N_spectra
argument) was reduced to 10 to get a quicker run time. This is also the reason for the large scatter of the data points below.
In practice it is convenient to skip this method for the first processing of the spectrum since this will only affect the statistical uncertainties but no other fit properties. Once reasonable fits have been achieved for all peaks of interest in the cells below, the exact uncertainties can be obtained by returning to this cell to execute determine_A_stat_emg
with a decent value for N_spectra
and then re-runnning the cells below (then with the update value for A_stat_emg
). The latter
is conveniently done by using the Run All Below
option in the Cell
panel of the Jupyter Notebook.
[6]:
# Determine A_stat_emg and save the resulting plot
spec.determine_A_stat_emg(species='Ca43:F19:-1e',x_range=0.004,plot_filename='outputs/'+filename+'_MLE',N_spectra=10)
Creating synthetic spectra via bootstrap re-sampling and fitting them for A_stat determination.
Depending on the choice of `N_spectra` this can take a few minutes. Interrupt kernel if this takes too long.
Done!
[[Model]]
Model(powerlaw)
[[Fit Statistics]]
# fitting method = leastsq
# function evals = 5
# data points = 8
# variables = 1
chi-square = 1.5599e-08
reduced chi-square = 2.2284e-09
Akaike info crit = -158.444192
Bayesian info crit = -158.364751
[[Variables]]
amplitude: 1.5233e-04 +/- 1.6364e-05 (10.74%) (init = 1)
exponent: -0.5 (fixed)

A_stat of a Gaussian model: 0.425
Default A_stat_emg for Hyper-EMG models: 0.52
A_stat_emg for this spectrum's emg22 fit model: 0.635 +- 0.068
Fit all peaks, perform mass re-calibration & obtain final mass values¶
The following code fits all peaks in the spectrum, performs the mass (re-)calibration, determines the peak-shape uncertainties and updates the peak properties list with the results including the final mass values and their uncertainties.
The simultaneous mass recalibration is optional and only invoked when the species_mass_calib
(or the index_mass_calib
) argument are specified. If this feature is not used, the fit_peaks method requires a pre-existing mass calibration (see Alternative 1 section below). In contrast to determine_peak_shape
, by default the fit_peaks
method performs a binned maximum likelihood fit (‘MLE’). For chi-square fitting with fit_peaks
,
see Alternative 2 section below. Fits with fit_peaks
can be restricted to a user-defined mass range (see the commented-out line of code below).
[7]:
# Maximum likelihood fit of all peaks in the spectrum
spec.fit_peaks(species_mass_calib='Ti46:O16:-1e')
# Maximum likelihood fit of peaks in a user-defined mass range
#spec.fit_peaks(species_mass_calib='Ti46:O16:-1e',x_fit_cen=61.9455,x_fit_range=0.01)


##### Mass recalibration #####
Relative literature error of mass calibrant: 3e-09
Relative statistical error of mass calibrant: 1.3e-08
Recalibration factor: 0.999999711 = 1 -2.89e-07
Relative recalibration error: 1.4e-08
##### Peak-shape uncertainty evaluation #####
Determining absolute centroid shifts of mass calibrant.
Re-fitting with sigma = 8.3e-05 +/- 3e-06 shifts Δm of peak 0 and mass calibrant by 0.497351 / -0.268 μu.
Re-fitting with sigma = 8.3e-05 +/- 3e-06 shifts Δm of peak 1 and mass calibrant by 1.419093 / -0.367 μu.
Re-fitting with sigma = 8.3e-05 +/- 3e-06 shifts Δm of peak 2 and mass calibrant by -0.124145 / 0.337 μu.
Re-fitting with sigma = 8.3e-05 +/- 3e-06 shifts Δm of peak 3 and mass calibrant by 0.009668 / 0.025 μu.
Re-fitting with sigma = 8.3e-05 +/- 3e-06 shifts Δm of peak 5 and mass calibrant by -0.014 / 0.002 μu.
Re-fitting with sigma = 8.3e-05 +/- 3e-06 shifts Δm of peak 6 and mass calibrant by 0.011673 / -0.032 μu.
Re-fitting with sigma = 8.3e-05 +/- 3e-06 shifts Δm of peak 7 and mass calibrant by -1.469091 / 0.908 μu.
Re-fitting with theta = 0.724714 +/- 0.023491 shifts Δm of peak 0 and mass calibrant by -1.447894 / 1.312 μu.
Re-fitting with theta = 0.724714 +/- 0.023491 shifts Δm of peak 1 and mass calibrant by -1.406527 / 1.334 μu.
Re-fitting with theta = 0.724714 +/- 0.023491 shifts Δm of peak 2 and mass calibrant by -0.434006 / 0.331 μu.
Re-fitting with theta = 0.724714 +/- 0.023491 shifts Δm of peak 3 and mass calibrant by -0.254027 / 0.14 μu.
Re-fitting with theta = 0.724714 +/- 0.023491 shifts Δm of peak 5 and mass calibrant by -0.269747 / 0.237 μu.
Re-fitting with theta = 0.724714 +/- 0.023491 shifts Δm of peak 6 and mass calibrant by -0.090195 / 0.031 μu.
Re-fitting with theta = 0.724714 +/- 0.023491 shifts Δm of peak 7 and mass calibrant by -1.874815 / 1.815 μu.
Re-fitting with eta_m1 = 0.920191 +/- 0.023131 shifts Δm of peak 0 and mass calibrant by 0.789394 / -0.741 μu.
Re-fitting with eta_m1 = 0.920191 +/- 0.023131 shifts Δm of peak 1 and mass calibrant by 0.461701 / -0.356 μu.
Re-fitting with eta_m1 = 0.920191 +/- 0.023131 shifts Δm of peak 2 and mass calibrant by 0.451256 / -0.44 μu.
Re-fitting with eta_m1 = 0.920191 +/- 0.023131 shifts Δm of peak 3 and mass calibrant by 0.404974 / -0.411 μu.
Re-fitting with eta_m1 = 0.920191 +/- 0.023131 shifts Δm of peak 5 and mass calibrant by 0.307791 / -0.254 μu.
Re-fitting with eta_m1 = 0.920191 +/- 0.023131 shifts Δm of peak 6 and mass calibrant by 0.014113 / -0.104 μu.
Re-fitting with eta_m1 = 0.920191 +/- 0.023131 shifts Δm of peak 7 and mass calibrant by 0.687914 / -0.701 μu.
Re-fitting with tau_m1 = 4.5e-05 +/- 6e-06 shifts Δm of peak 0 and mass calibrant by -0.57012 / 0.613 μu.
Re-fitting with tau_m1 = 4.5e-05 +/- 6e-06 shifts Δm of peak 1 and mass calibrant by 0.842104 / 0.017 μu.
Re-fitting with tau_m1 = 4.5e-05 +/- 6e-06 shifts Δm of peak 2 and mass calibrant by -0.310449 / 0.48 μu.
Re-fitting with tau_m1 = 4.5e-05 +/- 6e-06 shifts Δm of peak 3 and mass calibrant by -0.122483 / 0.103 μu.
Re-fitting with tau_m1 = 4.5e-05 +/- 6e-06 shifts Δm of peak 5 and mass calibrant by -0.211685 / 0.112 μu.
Re-fitting with tau_m1 = 4.5e-05 +/- 6e-06 shifts Δm of peak 6 and mass calibrant by -0.031523 / -0.011 μu.
Re-fitting with tau_m1 = 4.5e-05 +/- 6e-06 shifts Δm of peak 7 and mass calibrant by -2.051389 / 1.601 μu.
Re-fitting with tau_m2 = 0.000177 +/- 2.5e-05 shifts Δm of peak 0 and mass calibrant by -0.292169 / 0.398 μu.
Re-fitting with tau_m2 = 0.000177 +/- 2.5e-05 shifts Δm of peak 1 and mass calibrant by -0.191013 / 0.302 μu.
Re-fitting with tau_m2 = 0.000177 +/- 2.5e-05 shifts Δm of peak 2 and mass calibrant by -0.207079 / 0.247 μu.
Re-fitting with tau_m2 = 0.000177 +/- 2.5e-05 shifts Δm of peak 3 and mass calibrant by -0.198827 / 0.265 μu.
Re-fitting with tau_m2 = 0.000177 +/- 2.5e-05 shifts Δm of peak 5 and mass calibrant by -0.079733 / 0.189 μu.
Re-fitting with tau_m2 = 0.000177 +/- 2.5e-05 shifts Δm of peak 6 and mass calibrant by -0.040283 / 0.025 μu.
Re-fitting with tau_m2 = 0.000177 +/- 2.5e-05 shifts Δm of peak 7 and mass calibrant by 0.104562 / 0.023 μu.
Re-fitting with eta_p1 = 0.790092 +/- 0.044934 shifts Δm of peak 0 and mass calibrant by -0.25787 / 0.127 μu.
Re-fitting with eta_p1 = 0.790092 +/- 0.044934 shifts Δm of peak 1 and mass calibrant by -0.30804 / 0.236 μu.
Re-fitting with eta_p1 = 0.790092 +/- 0.044934 shifts Δm of peak 2 and mass calibrant by -0.266946 / 0.17 μu.
Re-fitting with eta_p1 = 0.790092 +/- 0.044934 shifts Δm of peak 3 and mass calibrant by -0.253966 / 0.15 μu.
Re-fitting with eta_p1 = 0.790092 +/- 0.044934 shifts Δm of peak 5 and mass calibrant by -0.234102 / 0.188 μu.
Re-fitting with eta_p1 = 0.790092 +/- 0.044934 shifts Δm of peak 6 and mass calibrant by 0.005052 / -0.022 μu.
Re-fitting with eta_p1 = 0.790092 +/- 0.044934 shifts Δm of peak 7 and mass calibrant by -3.950558 / 3.447 μu.
Re-fitting with tau_p1 = 0.000124 +/- 1.3e-05 shifts Δm of peak 0 and mass calibrant by 0.599944 / -0.879 μu.
Re-fitting with tau_p1 = 0.000124 +/- 1.3e-05 shifts Δm of peak 1 and mass calibrant by 0.623284 / -0.843 μu.
Re-fitting with tau_p1 = 0.000124 +/- 1.3e-05 shifts Δm of peak 2 and mass calibrant by 0.381975 / -0.49 μu.
Re-fitting with tau_p1 = 0.000124 +/- 1.3e-05 shifts Δm of peak 3 and mass calibrant by 0.214752 / -0.268 μu.
Re-fitting with tau_p1 = 0.000124 +/- 1.3e-05 shifts Δm of peak 5 and mass calibrant by 0.04681 / -0.092 μu.
Re-fitting with tau_p1 = 0.000124 +/- 1.3e-05 shifts Δm of peak 6 and mass calibrant by -0.039735 / -0.043 μu.
Re-fitting with tau_p1 = 0.000124 +/- 1.3e-05 shifts Δm of peak 7 and mass calibrant by 0.724091 / -0.84 μu.
Re-fitting with tau_p2 = 0.000408 +/- 5.5e-05 shifts Δm of peak 0 and mass calibrant by -0.047889 / -0.028 μu.
Re-fitting with tau_p2 = 0.000408 +/- 5.5e-05 shifts Δm of peak 1 and mass calibrant by 0.075925 / -0.105 μu.
Re-fitting with tau_p2 = 0.000408 +/- 5.5e-05 shifts Δm of peak 2 and mass calibrant by 0.019801 / -0.089 μu.
Re-fitting with tau_p2 = 0.000408 +/- 5.5e-05 shifts Δm of peak 3 and mass calibrant by 0.053686 / -0.141 μu.
Re-fitting with tau_p2 = 0.000408 +/- 5.5e-05 shifts Δm of peak 5 and mass calibrant by 0.39755 / -0.396 μu.
Re-fitting with tau_p2 = 0.000408 +/- 5.5e-05 shifts Δm of peak 6 and mass calibrant by -0.049006 / 0.027 μu.
Re-fitting with tau_p2 = 0.000408 +/- 5.5e-05 shifts Δm of peak 7 and mass calibrant by 5.770581 / -7.819 μu.
Relative peak-shape error of peak 0: 3.4e-08
Relative peak-shape error of peak 1: 3.9e-08
Relative peak-shape error of peak 2: 1.7e-08
Relative peak-shape error of peak 3: 1.1e-08
Relative peak-shape error of peak 5: 1.1e-08
Relative peak-shape error of peak 6: 3e-09
Relative peak-shape error of peak 7: 1.51e-07
x_pos | species | comment | m_AME | m_AME_error | extrapolated | fit_model | cost_func | red_chi | area | area_error | m_fit | rel_stat_error | rel_recal_error | rel_peakshape_error | rel_mass_error | A | atomic_ME_keV | mass_error_keV | m_dev_keV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 61.927800 | Ni62:-1e | - | 61.927796 | 4.700000e-07 | False | emg22 | MLE | 0.57 | 34.28 | 5.57 | 61.927803 | 4.201252e-07 | 1.364463e-08 | 3.363411e-08 | 4.216902e-07 | 62.0 | -66740.227 | 24.325360 | 6.103 |
1 | 61.932021 | Cu62:-1e? | - | NaN | NaN | False | emg22 | MLE | 0.57 | 25.16 | 5.57 | 61.932083 | 4.903586e-07 | 1.364463e-08 | 3.896350e-08 | 4.920934e-07 | NaN | NaN | 28.388557 | NaN |
2 | 61.934369 | ? | Non-isobaric | NaN | NaN | False | emg22 | MLE | 0.57 | 3879.62 | 47.60 | 61.934370 | 3.948740e-08 | 1.364463e-08 | 1.705508e-08 | 4.512545e-08 | NaN | NaN | 2.603355 | NaN |
3 | 61.943618 | Ga62:-1e | - | 61.943641 | 6.940000e-07 | False | emg22 | MLE | 0.57 | 939.07 | 23.68 | 61.943636 | 8.024891e-08 | 1.364463e-08 | 1.113420e-08 | 8.215859e-08 | 62.0 | -51992.089 | 4.740561 | -5.177 |
4 | 61.946994 | Ti46:O16:-1e | mass calibrant | 61.946993 | 1.760001e-07 | False | emg22 | MLE | 0.57 | 33951.28 | 140.21 | 61.946993 | 1.334555e-08 | 1.364463e-08 | NaN | NaN | 62.0 | -48864.806 | NaN | 0.000 |
5 | 61.949527 | Sc46:O16:-1e | - | 61.949534 | 7.320000e-07 | False | emg22 | MLE | 0.57 | 1542.61 | 30.25 | 61.949540 | 6.260639e-08 | 1.364463e-08 | 1.106221e-08 | 6.502390e-08 | 62.0 | -46492.523 | 3.752245 | 5.702 |
6 | 61.956611 | Ca43:F19:-1e | shape calibrant | 61.956621 | 2.440018e-07 | False | emg22 | MLE | 0.57 | 25913.21 | 121.87 | 61.956622 | 1.527343e-08 | 1.364463e-08 | 2.667552e-09 | 2.065355e-08 | 62.0 | -39895.649 | 1.191962 | 0.623 |
7 | 61.958997 | ? | - | NaN | NaN | False | emg22 | MLE | 0.57 | 22.08 | 5.39 | 61.958978 | 5.232160e-07 | 1.364463e-08 | 1.512691e-07 | 5.448151e-07 | NaN | NaN | 31.443690 | NaN |
Model
((((((((Model(constant, prefix='bkg_') + Model(emg22, prefix='p0_')) + Model(emg22, prefix='p1_')) + Model(emg22, prefix='p2_')) + Model(emg22, prefix='p3_')) + Model(emg22, prefix='p4_')) + Model(emg22, prefix='p5_')) + Model(emg22, prefix='p6_')) + Model(emg22, prefix='p7_'))Fit Statistics
fitting method | least_squares | |
# function evals | 9 | |
# data points | 1027 | |
# variables | 17 | |
chi-square | 576.182030 | |
reduced chi-square | 0.57047726 | |
Akaike info crit. | -559.578861 | |
Bayesian info crit. | -475.694109 |
Variables
name | value | standard error | relative error | initial value | min | max | vary | expression |
---|---|---|---|---|---|---|---|---|
bkg_c | 0.93849905 | 0.04823274 | (5.14%) | 0.1 | 0.00000000 | 4.00000000 | True | |
p0_amp | 0.00125783 | 2.0445e-04 | (16.25%) | 0.001488 | 1.0000e-20 | inf | True | |
p0_mu | 61.9278207 | 2.2787e-05 | (0.00%) | 61.927800309876424 | 61.9178003 | 61.9378003 | True | |
p0_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p0_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p0_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p0_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p0_eta_m1 |
p0_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p0_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p0_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p0_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p0_eta_p1 |
p0_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p0_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p1_amp | 9.2335e-04 | 2.0443e-04 | (22.14%) | 0.000496 | 1.0000e-20 | inf | True | |
p1_mu | 61.9321006 | 2.9321e-05 | (0.00%) | 61.93202053070152 | 61.9220205 | 61.9420205 | True | |
p1_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p1_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p1_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p1_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p1_eta_m1 |
p1_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p1_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p1_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p1_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p1_eta_p1 |
p1_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p1_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p2_amp | 0.14236628 | 0.00174660 | (1.23%) | 0.15648800000000002 | 1.0000e-20 | inf | True | |
p2_mu | 61.9343876 | 1.5546e-06 | (0.00%) | 61.93436923761443 | 61.9243692 | 61.9443692 | True | |
p2_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p2_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p2_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p2_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p2_eta_m1 |
p2_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p2_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p2_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p2_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p2_eta_p1 |
p2_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p2_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p3_amp | 0.03445992 | 8.6903e-04 | (2.52%) | 0.031992 | 1.0000e-20 | inf | True | |
p3_mu | 61.9436535 | 3.1399e-06 | (0.00%) | 61.943617703998214 | 61.9336177 | 61.9536177 | True | |
p3_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p3_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p3_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p3_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p3_eta_m1 |
p3_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p3_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p3_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p3_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p3_eta_p1 |
p3_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p3_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p4_amp | 1.24587330 | 0.00514515 | (0.41%) | 1.0294480000000001 | 1.0000e-20 | inf | True | |
p4_mu | 61.9470108 | 5.3152e-07 | (0.00%) | 61.946994300285866 | 61.9369943 | 61.9569943 | True | |
p4_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p4_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p4_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p4_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p4_eta_m1 |
p4_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p4_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p4_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p4_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p4_eta_p1 |
p4_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p4_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p5_amp | 0.05660752 | 0.00111021 | (1.96%) | 0.050095999999999995 | 1.0000e-20 | inf | True | |
p5_mu | 61.9495575 | 2.4749e-06 | (0.00%) | 61.94952680789496 | 61.9395268 | 61.9595268 | True | |
p5_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p5_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p5_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p5_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p5_eta_m1 |
p5_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p5_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p5_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p5_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p5_eta_p1 |
p5_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p5_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p6_amp | 0.95090900 | 0.00447198 | (0.47%) | 0.8422080000000001 | 1.0000e-20 | inf | True | |
p6_mu | 61.9566396 | 5.8891e-07 | (0.00%) | 61.95661076349748 | 61.9466108 | 61.9666108 | True | |
p6_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p6_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p6_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p6_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p6_eta_m1 |
p6_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p6_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p6_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p6_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p6_eta_p1 |
p6_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p6_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p7_amp | 8.1013e-04 | 1.9778e-04 | (24.41%) | 0.001488 | 1.0000e-20 | inf | True | |
p7_mu | 61.9589959 | 3.5423e-05 | (0.00%) | 61.95899664282278 | 61.9489966 | 61.9689966 | True | |
p7_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p7_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p7_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p7_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p7_eta_m1 |
p7_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p7_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p7_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p7_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p7_eta_p1 |
p7_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p7_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False |
Correlations (unreported correlations are < 0.100)
p1_amp | p1_mu | 0.2215 |
p7_amp | p7_mu | -0.1828 |
bkg_c | p7_amp | -0.1291 |
bkg_c | p1_amp | -0.1260 |
bkg_c | p0_amp | -0.1135 |
p4_amp | p4_mu | -0.1059 |
Plot the fit curve zoomed to a region of interest (optional)¶
For more detailed inspection of the fit, a zoom to peaks or regions of interest can be shown with the plot_fit_zoom method.
[8]:
spec.plot_fit_zoom(peak_indeces=[3,4]) # zoom to region around peaks 3 and 4


Export fit results¶
[9]:
spec.save_results('outputs/'+filename+' fitting MLE')
Fit results saved to file: outputs/2019-09-13_004-_006 SUMMED High stats 62Ga fitting MLE.xlsx
Peak-shape calibration saved to file: outputs/2019-09-13_004-_006 SUMMED High stats 62Ga fitting MLE_peakshape_calib.txt
That’s it! In principle we’re be done with the fitting at this point. Next we would probably take a look at the output file and proceed with some post-processing in Excel (e.g. combining mass values from different spectra etc.).
However, since emgfit gives the user a large amount of freedom, there’s are a number of things that could have been done differently depending on your preferences. So here is some possible…
Alternative procedures:¶
The above steps represent a full spectrum analysis. However, emgfit gives the user the freedom to take many different routes in processing the spectrum. Some of the possible alternatives are presented in the following:
Alternative 1: Performing the mass recalibration separately before the ion-of-interest fits¶
All steps up to the final peak fit are identical. For breviety here we simply create an exact clone of the above spectrum object:
[10]:
import copy
spec2 = copy.deepcopy(spec) # create a clone of the spectrum object
First obtain the recalibration factor from a fit of the mass calibrant¶
[11]:
spec2.fit_calibrant(species_mass_calib='Ti46:O16:-1e')
##### Calibrant fit #####


Model
((Model(constant, prefix='bkg_') + Model(emg22, prefix='p4_')) + Model(emg22, prefix='p5_'))Fit Statistics
fitting method | least_squares | |
# function evals | 10 | |
# data points | 169 | |
# variables | 5 | |
chi-square | 213.595060 | |
reduced chi-square | 1.30240890 | |
Akaike info crit. | 49.5769720 | |
Bayesian info crit. | 65.2264656 |
Variables
name | value | standard error | relative error | initial value | min | max | vary | expression |
---|---|---|---|---|---|---|---|---|
bkg_c | 1.56514795 | 0.20391463 | (13.03%) | 0.1 | 0.00000000 | 4.00000000 | True | |
p4_amp | 1.24435142 | 0.00781945 | (0.63%) | 1.0294480000000001 | 1.0000e-20 | inf | True | |
p4_mu | 61.9470108 | 7.9452e-07 | (0.00%) | 61.946994300285866 | 61.9369943 | 61.9569943 | True | |
p4_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p4_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p4_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p4_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p4_eta_m1 |
p4_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p4_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p4_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p4_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p4_eta_p1 |
p4_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p4_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p5_amp | 0.05600676 | 0.00169302 | (3.02%) | 0.050095999999999995 | 1.0000e-20 | inf | True | |
p5_mu | 61.9495577 | 3.7434e-06 | (0.00%) | 61.94952680789496 | 61.9395268 | 61.9595268 | True | |
p5_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p5_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p5_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p5_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p5_eta_m1 |
p5_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p5_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p5_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p5_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p5_eta_p1 |
p5_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p5_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False |
Correlations (unreported correlations are < 0.100)
p4_amp | p4_mu | -0.1382 |
bkg_c | p5_amp | -0.1163 |
##### Mass recalibration #####
Relative literature error of mass calibrant: 3e-09
Relative statistical error of mass calibrant: 1.3e-08
Recalibration factor: 0.999999711 = 1 -2.89e-07
Relative recalibration error: 1.4e-08
Determining absolute centroid shifts of mass calibrant.
Fit all peaks and use the mass recalibration factor from above to calculate the final mass values¶
[12]:
spec2.fit_peaks()


##### Peak-shape uncertainty evaluation #####
Determining absolute centroid shifts of mass calibrant.
Re-fitting with sigma = 8.3e-05 +/- 3e-06 shifts Δm of peak 0 and mass calibrant by 0.497351 / -0.268 μu.
Re-fitting with sigma = 8.3e-05 +/- 3e-06 shifts Δm of peak 1 and mass calibrant by 1.419093 / -0.367 μu.
Re-fitting with sigma = 8.3e-05 +/- 3e-06 shifts Δm of peak 2 and mass calibrant by -0.124145 / 0.337 μu.
Re-fitting with sigma = 8.3e-05 +/- 3e-06 shifts Δm of peak 3 and mass calibrant by 0.009668 / 0.025 μu.
Re-fitting with sigma = 8.3e-05 +/- 3e-06 shifts Δm of peak 5 and mass calibrant by -0.014 / 0.002 μu.
Re-fitting with sigma = 8.3e-05 +/- 3e-06 shifts Δm of peak 6 and mass calibrant by 0.011673 / -0.032 μu.
Re-fitting with sigma = 8.3e-05 +/- 3e-06 shifts Δm of peak 7 and mass calibrant by -1.469091 / 0.908 μu.
Re-fitting with theta = 0.724714 +/- 0.023491 shifts Δm of peak 0 and mass calibrant by -1.447894 / 1.312 μu.
Re-fitting with theta = 0.724714 +/- 0.023491 shifts Δm of peak 1 and mass calibrant by -1.406527 / 1.334 μu.
Re-fitting with theta = 0.724714 +/- 0.023491 shifts Δm of peak 2 and mass calibrant by -0.434006 / 0.331 μu.
Re-fitting with theta = 0.724714 +/- 0.023491 shifts Δm of peak 3 and mass calibrant by -0.254027 / 0.14 μu.
Re-fitting with theta = 0.724714 +/- 0.023491 shifts Δm of peak 5 and mass calibrant by -0.269747 / 0.237 μu.
Re-fitting with theta = 0.724714 +/- 0.023491 shifts Δm of peak 6 and mass calibrant by -0.090195 / 0.031 μu.
Re-fitting with theta = 0.724714 +/- 0.023491 shifts Δm of peak 7 and mass calibrant by -1.874815 / 1.815 μu.
Re-fitting with eta_m1 = 0.920191 +/- 0.023131 shifts Δm of peak 0 and mass calibrant by 0.789394 / -0.741 μu.
Re-fitting with eta_m1 = 0.920191 +/- 0.023131 shifts Δm of peak 1 and mass calibrant by 0.461701 / -0.356 μu.
Re-fitting with eta_m1 = 0.920191 +/- 0.023131 shifts Δm of peak 2 and mass calibrant by 0.451256 / -0.44 μu.
Re-fitting with eta_m1 = 0.920191 +/- 0.023131 shifts Δm of peak 3 and mass calibrant by 0.404974 / -0.411 μu.
Re-fitting with eta_m1 = 0.920191 +/- 0.023131 shifts Δm of peak 5 and mass calibrant by 0.307791 / -0.254 μu.
Re-fitting with eta_m1 = 0.920191 +/- 0.023131 shifts Δm of peak 6 and mass calibrant by 0.014113 / -0.104 μu.
Re-fitting with eta_m1 = 0.920191 +/- 0.023131 shifts Δm of peak 7 and mass calibrant by 0.687914 / -0.701 μu.
Re-fitting with tau_m1 = 4.5e-05 +/- 6e-06 shifts Δm of peak 0 and mass calibrant by -0.57012 / 0.613 μu.
Re-fitting with tau_m1 = 4.5e-05 +/- 6e-06 shifts Δm of peak 1 and mass calibrant by 0.842104 / 0.017 μu.
Re-fitting with tau_m1 = 4.5e-05 +/- 6e-06 shifts Δm of peak 2 and mass calibrant by -0.310449 / 0.48 μu.
Re-fitting with tau_m1 = 4.5e-05 +/- 6e-06 shifts Δm of peak 3 and mass calibrant by -0.122483 / 0.103 μu.
Re-fitting with tau_m1 = 4.5e-05 +/- 6e-06 shifts Δm of peak 5 and mass calibrant by -0.211685 / 0.112 μu.
Re-fitting with tau_m1 = 4.5e-05 +/- 6e-06 shifts Δm of peak 6 and mass calibrant by -0.031523 / -0.011 μu.
Re-fitting with tau_m1 = 4.5e-05 +/- 6e-06 shifts Δm of peak 7 and mass calibrant by -2.051389 / 1.601 μu.
Re-fitting with tau_m2 = 0.000177 +/- 2.5e-05 shifts Δm of peak 0 and mass calibrant by -0.292169 / 0.398 μu.
Re-fitting with tau_m2 = 0.000177 +/- 2.5e-05 shifts Δm of peak 1 and mass calibrant by -0.191013 / 0.302 μu.
Re-fitting with tau_m2 = 0.000177 +/- 2.5e-05 shifts Δm of peak 2 and mass calibrant by -0.207079 / 0.247 μu.
Re-fitting with tau_m2 = 0.000177 +/- 2.5e-05 shifts Δm of peak 3 and mass calibrant by -0.198827 / 0.265 μu.
Re-fitting with tau_m2 = 0.000177 +/- 2.5e-05 shifts Δm of peak 5 and mass calibrant by -0.079733 / 0.189 μu.
Re-fitting with tau_m2 = 0.000177 +/- 2.5e-05 shifts Δm of peak 6 and mass calibrant by -0.040283 / 0.025 μu.
Re-fitting with tau_m2 = 0.000177 +/- 2.5e-05 shifts Δm of peak 7 and mass calibrant by 0.104562 / 0.023 μu.
Re-fitting with eta_p1 = 0.790092 +/- 0.044934 shifts Δm of peak 0 and mass calibrant by -0.25787 / 0.127 μu.
Re-fitting with eta_p1 = 0.790092 +/- 0.044934 shifts Δm of peak 1 and mass calibrant by -0.30804 / 0.236 μu.
Re-fitting with eta_p1 = 0.790092 +/- 0.044934 shifts Δm of peak 2 and mass calibrant by -0.266946 / 0.17 μu.
Re-fitting with eta_p1 = 0.790092 +/- 0.044934 shifts Δm of peak 3 and mass calibrant by -0.253966 / 0.15 μu.
Re-fitting with eta_p1 = 0.790092 +/- 0.044934 shifts Δm of peak 5 and mass calibrant by -0.234102 / 0.188 μu.
Re-fitting with eta_p1 = 0.790092 +/- 0.044934 shifts Δm of peak 6 and mass calibrant by 0.005052 / -0.022 μu.
Re-fitting with eta_p1 = 0.790092 +/- 0.044934 shifts Δm of peak 7 and mass calibrant by -3.950558 / 3.447 μu.
Re-fitting with tau_p1 = 0.000124 +/- 1.3e-05 shifts Δm of peak 0 and mass calibrant by 0.599944 / -0.879 μu.
Re-fitting with tau_p1 = 0.000124 +/- 1.3e-05 shifts Δm of peak 1 and mass calibrant by 0.623284 / -0.843 μu.
Re-fitting with tau_p1 = 0.000124 +/- 1.3e-05 shifts Δm of peak 2 and mass calibrant by 0.381975 / -0.49 μu.
Re-fitting with tau_p1 = 0.000124 +/- 1.3e-05 shifts Δm of peak 3 and mass calibrant by 0.214752 / -0.268 μu.
Re-fitting with tau_p1 = 0.000124 +/- 1.3e-05 shifts Δm of peak 5 and mass calibrant by 0.04681 / -0.092 μu.
Re-fitting with tau_p1 = 0.000124 +/- 1.3e-05 shifts Δm of peak 6 and mass calibrant by -0.039735 / -0.043 μu.
Re-fitting with tau_p1 = 0.000124 +/- 1.3e-05 shifts Δm of peak 7 and mass calibrant by 0.724091 / -0.84 μu.
Re-fitting with tau_p2 = 0.000408 +/- 5.5e-05 shifts Δm of peak 0 and mass calibrant by -0.047889 / -0.028 μu.
Re-fitting with tau_p2 = 0.000408 +/- 5.5e-05 shifts Δm of peak 1 and mass calibrant by 0.075925 / -0.105 μu.
Re-fitting with tau_p2 = 0.000408 +/- 5.5e-05 shifts Δm of peak 2 and mass calibrant by 0.019801 / -0.089 μu.
Re-fitting with tau_p2 = 0.000408 +/- 5.5e-05 shifts Δm of peak 3 and mass calibrant by 0.053686 / -0.141 μu.
Re-fitting with tau_p2 = 0.000408 +/- 5.5e-05 shifts Δm of peak 5 and mass calibrant by 0.39755 / -0.396 μu.
Re-fitting with tau_p2 = 0.000408 +/- 5.5e-05 shifts Δm of peak 6 and mass calibrant by -0.049006 / 0.027 μu.
Re-fitting with tau_p2 = 0.000408 +/- 5.5e-05 shifts Δm of peak 7 and mass calibrant by 5.770581 / -7.819 μu.
Relative peak-shape error of peak 0: 3.4e-08
Relative peak-shape error of peak 1: 3.9e-08
Relative peak-shape error of peak 2: 1.7e-08
Relative peak-shape error of peak 3: 1.1e-08
Relative peak-shape error of peak 5: 1.1e-08
Relative peak-shape error of peak 6: 3e-09
Relative peak-shape error of peak 7: 1.51e-07
x_pos | species | comment | m_AME | m_AME_error | extrapolated | fit_model | cost_func | red_chi | area | area_error | m_fit | rel_stat_error | rel_recal_error | rel_peakshape_error | rel_mass_error | A | atomic_ME_keV | mass_error_keV | m_dev_keV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 61.927800 | Ni62:-1e | - | 61.927796 | 4.700000e-07 | False | emg22 | MLE | 0.57 | 34.28 | 5.57 | 61.927803 | 4.201252e-07 | 1.365261e-08 | 3.363411e-08 | 4.216904e-07 | 62.0 | -66740.242 | 24.325375 | 6.088 |
1 | 61.932021 | Cu62:-1e? | - | NaN | NaN | False | emg22 | MLE | 0.57 | 25.16 | 5.57 | 61.932083 | 4.903586e-07 | 1.365261e-08 | 3.896350e-08 | 4.920936e-07 | NaN | NaN | 28.388570 | NaN |
2 | 61.934369 | ? | Non-isobaric | NaN | NaN | False | emg22 | MLE | 0.57 | 3879.62 | 47.60 | 61.934370 | 3.948740e-08 | 1.365261e-08 | 1.705508e-08 | 4.512786e-08 | NaN | NaN | 2.603494 | NaN |
3 | 61.943618 | Ga62:-1e | - | 61.943641 | 6.940000e-07 | False | emg22 | MLE | 0.57 | 939.07 | 23.68 | 61.943636 | 8.024891e-08 | 1.365261e-08 | 1.113420e-08 | 8.215991e-08 | 62.0 | -51992.104 | 4.740638 | -5.192 |
4 | 61.946994 | Ti46:O16:-1e | mass calibrant | 61.946993 | 1.760001e-07 | False | emg22 | MLE | 1.30 | 33909.80 | 213.09 | 61.946993 | 1.335371e-08 | 1.365261e-08 | NaN | NaN | 62.0 | -48864.806 | NaN | 0.000 |
5 | 61.949527 | Sc46:O16:-1e | - | 61.949534 | 7.320000e-07 | False | emg22 | MLE | 0.57 | 1542.61 | 30.25 | 61.949540 | 6.260639e-08 | 1.365261e-08 | 1.106221e-08 | 6.502558e-08 | 62.0 | -46492.538 | 3.752342 | 5.687 |
6 | 61.956611 | Ca43:F19:-1e | shape calibrant | 61.956621 | 2.440018e-07 | False | emg22 | MLE | 0.57 | 25913.21 | 121.87 | 61.956622 | 1.527343e-08 | 1.365261e-08 | 2.667552e-09 | 2.065883e-08 | 62.0 | -39895.663 | 1.192267 | 0.608 |
7 | 61.958997 | ? | - | NaN | NaN | False | emg22 | MLE | 0.57 | 22.08 | 5.39 | 61.958978 | 5.232160e-07 | 1.365261e-08 | 1.512691e-07 | 5.448153e-07 | NaN | NaN | 31.443701 | NaN |
Model
((((((((Model(constant, prefix='bkg_') + Model(emg22, prefix='p0_')) + Model(emg22, prefix='p1_')) + Model(emg22, prefix='p2_')) + Model(emg22, prefix='p3_')) + Model(emg22, prefix='p4_')) + Model(emg22, prefix='p5_')) + Model(emg22, prefix='p6_')) + Model(emg22, prefix='p7_'))Fit Statistics
fitting method | least_squares | |
# function evals | 9 | |
# data points | 1027 | |
# variables | 17 | |
chi-square | 576.182030 | |
reduced chi-square | 0.57047726 | |
Akaike info crit. | -559.578861 | |
Bayesian info crit. | -475.694109 |
Variables
name | value | standard error | relative error | initial value | min | max | vary | expression |
---|---|---|---|---|---|---|---|---|
bkg_c | 0.93849905 | 0.04823274 | (5.14%) | 0.1 | 0.00000000 | 4.00000000 | True | |
p0_amp | 0.00125783 | 2.0445e-04 | (16.25%) | 0.001488 | 1.0000e-20 | inf | True | |
p0_mu | 61.9278207 | 2.2787e-05 | (0.00%) | 61.927800309876424 | 61.9178003 | 61.9378003 | True | |
p0_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p0_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p0_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p0_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p0_eta_m1 |
p0_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p0_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p0_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p0_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p0_eta_p1 |
p0_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p0_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p1_amp | 9.2335e-04 | 2.0443e-04 | (22.14%) | 0.000496 | 1.0000e-20 | inf | True | |
p1_mu | 61.9321006 | 2.9321e-05 | (0.00%) | 61.93202053070152 | 61.9220205 | 61.9420205 | True | |
p1_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p1_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p1_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p1_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p1_eta_m1 |
p1_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p1_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p1_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p1_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p1_eta_p1 |
p1_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p1_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p2_amp | 0.14236628 | 0.00174660 | (1.23%) | 0.15648800000000002 | 1.0000e-20 | inf | True | |
p2_mu | 61.9343876 | 1.5546e-06 | (0.00%) | 61.93436923761443 | 61.9243692 | 61.9443692 | True | |
p2_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p2_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p2_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p2_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p2_eta_m1 |
p2_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p2_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p2_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p2_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p2_eta_p1 |
p2_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p2_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p3_amp | 0.03445992 | 8.6903e-04 | (2.52%) | 0.031992 | 1.0000e-20 | inf | True | |
p3_mu | 61.9436535 | 3.1399e-06 | (0.00%) | 61.943617703998214 | 61.9336177 | 61.9536177 | True | |
p3_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p3_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p3_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p3_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p3_eta_m1 |
p3_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p3_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p3_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p3_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p3_eta_p1 |
p3_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p3_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p4_amp | 1.24587330 | 0.00514515 | (0.41%) | 1.0294480000000001 | 1.0000e-20 | inf | True | |
p4_mu | 61.9470108 | 5.3152e-07 | (0.00%) | 61.946994300285866 | 61.9369943 | 61.9569943 | True | |
p4_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p4_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p4_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p4_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p4_eta_m1 |
p4_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p4_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p4_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p4_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p4_eta_p1 |
p4_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p4_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p5_amp | 0.05660752 | 0.00111021 | (1.96%) | 0.050095999999999995 | 1.0000e-20 | inf | True | |
p5_mu | 61.9495575 | 2.4749e-06 | (0.00%) | 61.94952680789496 | 61.9395268 | 61.9595268 | True | |
p5_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p5_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p5_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p5_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p5_eta_m1 |
p5_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p5_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p5_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p5_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p5_eta_p1 |
p5_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p5_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p6_amp | 0.95090900 | 0.00447198 | (0.47%) | 0.8422080000000001 | 1.0000e-20 | inf | True | |
p6_mu | 61.9566396 | 5.8891e-07 | (0.00%) | 61.95661076349748 | 61.9466108 | 61.9666108 | True | |
p6_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p6_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p6_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p6_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p6_eta_m1 |
p6_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p6_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p6_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p6_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p6_eta_p1 |
p6_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p6_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p7_amp | 8.1013e-04 | 1.9778e-04 | (24.41%) | 0.001488 | 1.0000e-20 | inf | True | |
p7_mu | 61.9589959 | 3.5423e-05 | (0.00%) | 61.95899664282278 | 61.9489966 | 61.9689966 | True | |
p7_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p7_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p7_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p7_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p7_eta_m1 |
p7_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p7_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p7_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p7_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p7_eta_p1 |
p7_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p7_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False |
Correlations (unreported correlations are < 0.100)
p1_amp | p1_mu | 0.2215 |
p7_amp | p7_mu | -0.1828 |
bkg_c | p7_amp | -0.1291 |
bkg_c | p1_amp | -0.1260 |
bkg_c | p0_amp | -0.1135 |
p4_amp | p4_mu | -0.1059 |
Alternative 2: Chi-square instead of MLE fitting¶
All steps up to the final peak fit are identical. For breviety here we simply create an exact clone of the above spectrum object and re-use the above peak-shape calibration (obtained with chi-square fitting):
[13]:
import copy
spec_chi_sq = copy.deepcopy(spec) # create a clone of the spectrum object
# Use Pearson's chi-squared statistic for A_stat_emg determination
spec_chi_sq.determine_A_stat_emg(species='Ca43:F19:-1e',x_range=0.004,cost_func='chi-square',plot_filename='outputs/'+filename+'_chi-square',N_spectra=10)
Creating synthetic spectra via bootstrap re-sampling and fitting them for A_stat determination.
Depending on the choice of `N_spectra` this can take a few minutes. Interrupt kernel if this takes too long.
Done!
[[Model]]
Model(powerlaw)
[[Fit Statistics]]
# fitting method = leastsq
# function evals = 5
# data points = 8
# variables = 1
chi-square = 7.5126e-09
reduced chi-square = 1.0732e-09
Akaike info crit = -164.288995
Bayesian info crit = -164.209554
[[Variables]]
amplitude: 1.5101e-04 +/- 1.2185e-05 (8.07%) (init = 1)
exponent: -0.5 (fixed)

A_stat of a Gaussian model: 0.425
Default A_stat_emg for Hyper-EMG models: 0.52
A_stat_emg for this spectrum's emg22 fit model: 0.629 +- 0.051
[14]:
spec_chi_sq.fit_peaks(species_mass_calib='Ti46:O16:-1e',cost_func='chi-square') # use Pearson's chi-squared statistic


##### Mass recalibration #####
Relative literature error of mass calibrant: 3e-09
Relative statistical error of mass calibrant: 1.3e-08
Recalibration factor: 0.999999710 = 1 -2.90e-07
Relative recalibration error: 1.4e-08
##### Peak-shape uncertainty evaluation #####
Determining absolute centroid shifts of mass calibrant.
Re-fitting with sigma = 8.3e-05 +/- 3e-06 shifts Δm of peak 0 and mass calibrant by 0.51581 / -0.479 μu.
Re-fitting with sigma = 8.3e-05 +/- 3e-06 shifts Δm of peak 1 and mass calibrant by 0.679335 / -0.555 μu.
Re-fitting with sigma = 8.3e-05 +/- 3e-06 shifts Δm of peak 2 and mass calibrant by -0.32189 / 0.327 μu.
Re-fitting with sigma = 8.3e-05 +/- 3e-06 shifts Δm of peak 3 and mass calibrant by -0.108786 / 0.103 μu.
Re-fitting with sigma = 8.3e-05 +/- 3e-06 shifts Δm of peak 5 and mass calibrant by -0.044844 / 0.047 μu.
Re-fitting with sigma = 8.3e-05 +/- 3e-06 shifts Δm of peak 6 and mass calibrant by 0.010156 / -0.012 μu.
Re-fitting with sigma = 8.3e-05 +/- 3e-06 shifts Δm of peak 7 and mass calibrant by -1.875192 / 1.727 μu.
Re-fitting with theta = 0.724714 +/- 0.023491 shifts Δm of peak 0 and mass calibrant by -0.654948 / 0.562 μu.
Re-fitting with theta = 0.724714 +/- 0.023491 shifts Δm of peak 1 and mass calibrant by -1.290619 / 1.127 μu.
Re-fitting with theta = 0.724714 +/- 0.023491 shifts Δm of peak 2 and mass calibrant by -0.630664 / 0.574 μu.
Re-fitting with theta = 0.724714 +/- 0.023491 shifts Δm of peak 3 and mass calibrant by -0.258654 / 0.229 μu.
Re-fitting with theta = 0.724714 +/- 0.023491 shifts Δm of peak 5 and mass calibrant by -0.164053 / 0.161 μu.
Re-fitting with theta = 0.724714 +/- 0.023491 shifts Δm of peak 6 and mass calibrant by -0.018755 / 0.022 μu.
Re-fitting with theta = 0.724714 +/- 0.023491 shifts Δm of peak 7 and mass calibrant by -2.327694 / 2.131 μu.
Re-fitting with eta_m1 = 0.920191 +/- 0.023131 shifts Δm of peak 0 and mass calibrant by 0.485349 / -0.423 μu.
Re-fitting with eta_m1 = 0.920191 +/- 0.023131 shifts Δm of peak 1 and mass calibrant by 0.069115 / -0.078 μu.
Re-fitting with eta_m1 = 0.920191 +/- 0.023131 shifts Δm of peak 2 and mass calibrant by 0.505205 / -0.425 μu.
Re-fitting with eta_m1 = 0.920191 +/- 0.023131 shifts Δm of peak 3 and mass calibrant by 0.471321 / -0.339 μu.
Re-fitting with eta_m1 = 0.920191 +/- 0.023131 shifts Δm of peak 5 and mass calibrant by 0.240982 / -0.146 μu.
Re-fitting with eta_m1 = 0.920191 +/- 0.023131 shifts Δm of peak 6 and mass calibrant by 0.028091 / -0.024 μu.
Re-fitting with eta_m1 = 0.920191 +/- 0.023131 shifts Δm of peak 7 and mass calibrant by 0.854894 / -0.673 μu.
Re-fitting with tau_m1 = 4.5e-05 +/- 6e-06 shifts Δm of peak 0 and mass calibrant by -0.619823 / 0.62 μu.
Re-fitting with tau_m1 = 4.5e-05 +/- 6e-06 shifts Δm of peak 1 and mass calibrant by 0.257955 / -0.199 μu.
Re-fitting with tau_m1 = 4.5e-05 +/- 6e-06 shifts Δm of peak 2 and mass calibrant by -0.615288 / 0.6 μu.
Re-fitting with tau_m1 = 4.5e-05 +/- 6e-06 shifts Δm of peak 3 and mass calibrant by -0.279127 / 0.259 μu.
Re-fitting with tau_m1 = 4.5e-05 +/- 6e-06 shifts Δm of peak 5 and mass calibrant by -0.246627 / 0.239 μu.
Re-fitting with tau_m1 = 4.5e-05 +/- 6e-06 shifts Δm of peak 6 and mass calibrant by -0.035277 / 0.03 μu.
Re-fitting with tau_m1 = 4.5e-05 +/- 6e-06 shifts Δm of peak 7 and mass calibrant by -2.281664 / 2.371 μu.
Re-fitting with tau_m2 = 0.000177 +/- 2.5e-05 shifts Δm of peak 0 and mass calibrant by 0.076854 / -0.083 μu.
Re-fitting with tau_m2 = 0.000177 +/- 2.5e-05 shifts Δm of peak 1 and mass calibrant by 0.190276 / -0.39 μu.
Re-fitting with tau_m2 = 0.000177 +/- 2.5e-05 shifts Δm of peak 2 and mass calibrant by -0.114047 / 0.207 μu.
Re-fitting with tau_m2 = 0.000177 +/- 2.5e-05 shifts Δm of peak 3 and mass calibrant by -0.167053 / 0.274 μu.
Re-fitting with tau_m2 = 0.000177 +/- 2.5e-05 shifts Δm of peak 5 and mass calibrant by -0.009732 / 0.08 μu.
Re-fitting with tau_m2 = 0.000177 +/- 2.5e-05 shifts Δm of peak 6 and mass calibrant by 0.010157 / -0.015 μu.
Re-fitting with tau_m2 = 0.000177 +/- 2.5e-05 shifts Δm of peak 7 and mass calibrant by 0.05257 / 0.099 μu.
Re-fitting with eta_p1 = 0.790092 +/- 0.044934 shifts Δm of peak 0 and mass calibrant by -0.3742 / 0.164 μu.
Re-fitting with eta_p1 = 0.790092 +/- 0.044934 shifts Δm of peak 1 and mass calibrant by -0.693045 / 0.381 μu.
Re-fitting with eta_p1 = 0.790092 +/- 0.044934 shifts Δm of peak 2 and mass calibrant by -0.308272 / 0.253 μu.
Re-fitting with eta_p1 = 0.790092 +/- 0.044934 shifts Δm of peak 3 and mass calibrant by -0.208199 / 0.154 μu.
Re-fitting with eta_p1 = 0.790092 +/- 0.044934 shifts Δm of peak 5 and mass calibrant by -0.222521 / 0.169 μu.
Re-fitting with eta_p1 = 0.790092 +/- 0.044934 shifts Δm of peak 6 and mass calibrant by 0.015832 / -0.013 μu.
Re-fitting with eta_p1 = 0.790092 +/- 0.044934 shifts Δm of peak 7 and mass calibrant by -7.46419 / 5.139 μu.
Re-fitting with tau_p1 = 0.000124 +/- 1.3e-05 shifts Δm of peak 0 and mass calibrant by -0.287841 / 0.259 μu.
Re-fitting with tau_p1 = 0.000124 +/- 1.3e-05 shifts Δm of peak 1 and mass calibrant by 0.33188 / -0.638 μu.
Re-fitting with tau_p1 = 0.000124 +/- 1.3e-05 shifts Δm of peak 2 and mass calibrant by 0.543039 / -0.679 μu.
Re-fitting with tau_p1 = 0.000124 +/- 1.3e-05 shifts Δm of peak 3 and mass calibrant by 0.231734 / -0.288 μu.
Re-fitting with tau_p1 = 0.000124 +/- 1.3e-05 shifts Δm of peak 5 and mass calibrant by -0.038043 / 0.035 μu.
Re-fitting with tau_p1 = 0.000124 +/- 1.3e-05 shifts Δm of peak 6 and mass calibrant by -0.000482 / -0.003 μu.
Re-fitting with tau_p1 = 0.000124 +/- 1.3e-05 shifts Δm of peak 7 and mass calibrant by 0.302296 / -0.405 μu.
Re-fitting with tau_p2 = 0.000408 +/- 5.5e-05 shifts Δm of peak 0 and mass calibrant by 0.41938 / -0.609 μu.
Re-fitting with tau_p2 = 0.000408 +/- 5.5e-05 shifts Δm of peak 1 and mass calibrant by 0.660769 / -0.935 μu.
Re-fitting with tau_p2 = 0.000408 +/- 5.5e-05 shifts Δm of peak 2 and mass calibrant by 0.018303 / -0.08 μu.
Re-fitting with tau_p2 = 0.000408 +/- 5.5e-05 shifts Δm of peak 3 and mass calibrant by 0.048622 / -0.108 μu.
Re-fitting with tau_p2 = 0.000408 +/- 5.5e-05 shifts Δm of peak 5 and mass calibrant by 0.466927 / -0.569 μu.
Re-fitting with tau_p2 = 0.000408 +/- 5.5e-05 shifts Δm of peak 6 and mass calibrant by -0.016967 / 0.023 μu.
Re-fitting with tau_p2 = 0.000408 +/- 5.5e-05 shifts Δm of peak 7 and mass calibrant by 8.425716 / -22.021 μu.
Relative peak-shape error of peak 0: 2.2e-08
Relative peak-shape error of peak 1: 3.3e-08
Relative peak-shape error of peak 2: 2.1e-08
Relative peak-shape error of peak 3: 1.2e-08
Relative peak-shape error of peak 5: 1.2e-08
Relative peak-shape error of peak 6: 1e-09
Relative peak-shape error of peak 7: 3.81e-07
x_pos | species | comment | m_AME | m_AME_error | extrapolated | fit_model | cost_func | red_chi | area | area_error | m_fit | rel_stat_error | rel_recal_error | rel_peakshape_error | rel_mass_error | A | atomic_ME_keV | mass_error_keV | m_dev_keV | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 61.927800 | Ni62:-1e | - | 61.927796 | 4.700000e-07 | False | emg22 | chi-square | 0.99 | 40.92 | 7.49 | 61.927807 | 3.811977e-07 | 1.351950e-08 | 2.234155e-08 | 3.820911e-07 | 62.0 | -66736.708 | 22.041075 | 9.622 |
1 | 61.932021 | Cu62:-1e? | - | NaN | NaN | False | emg22 | chi-square | 0.99 | 28.22 | 6.66 | 61.932067 | 4.589969e-07 | 1.351950e-08 | 3.274970e-08 | 4.603623e-07 | NaN | NaN | 26.558006 | NaN |
2 | 61.934369 | ? | Non-isobaric | NaN | NaN | False | emg22 | chi-square | 0.99 | 3990.65 | 63.92 | 61.934370 | 3.859671e-08 | 1.351950e-08 | 2.132427e-08 | 4.612166e-08 | NaN | NaN | 2.660828 | NaN |
3 | 61.943618 | Ga62:-1e | - | 61.943641 | 6.940000e-07 | False | emg22 | chi-square | 0.99 | 957.83 | 31.47 | 61.943635 | 7.877038e-08 | 1.351950e-08 | 1.242163e-08 | 8.088168e-08 | 62.0 | -51992.207 | 4.666884 | -5.295 |
4 | 61.946994 | Ti46:O16:-1e | mass calibrant | 61.946993 | 1.760001e-07 | False | emg22 | chi-square | 0.99 | 34014.37 | 184.70 | 61.946993 | 1.321759e-08 | 1.351950e-08 | NaN | NaN | 62.0 | -48864.806 | NaN | 0.000 |
5 | 61.949527 | Sc46:O16:-1e | - | 61.949534 | 7.320000e-07 | False | emg22 | chi-square | 0.99 | 1573.74 | 40.42 | 61.949540 | 6.144680e-08 | 1.351950e-08 | 1.174502e-08 | 6.400337e-08 | 62.0 | -46492.418 | 3.693355 | 5.807 |
6 | 61.956611 | Ca43:F19:-1e | shape calibrant | 61.956621 | 2.440018e-07 | False | emg22 | chi-square | 0.99 | 25965.46 | 161.43 | 61.956622 | 1.512579e-08 | 1.351950e-08 | 9.786474e-10 | 2.031069e-08 | 62.0 | -39895.701 | 1.172175 | 0.570 |
7 | 61.958997 | ? | - | NaN | NaN | False | emg22 | chi-square | 0.99 | 27.46 | 6.98 | 61.958999 | 4.651030e-07 | 1.351950e-08 | 3.806100e-07 | 6.011385e-07 | NaN | NaN | 34.694376 | NaN |
Model
((((((((Model(constant, prefix='bkg_') + Model(emg22, prefix='p0_')) + Model(emg22, prefix='p1_')) + Model(emg22, prefix='p2_')) + Model(emg22, prefix='p3_')) + Model(emg22, prefix='p4_')) + Model(emg22, prefix='p5_')) + Model(emg22, prefix='p6_')) + Model(emg22, prefix='p7_'))Fit Statistics
fitting method | least_squares | |
# function evals | 10 | |
# data points | 1027 | |
# variables | 17 | |
chi-square | 996.911557 | |
reduced chi-square | 0.98704115 | |
Akaike info crit. | 3.46199759 | |
Bayesian info crit. | 87.3467502 |
Variables
name | value | standard error | relative error | initial value | min | max | vary | expression |
---|---|---|---|---|---|---|---|---|
bkg_c | 0.60918294 | 0.03486864 | (5.72%) | 0.1 | 0.00000000 | 4.00000000 | True | |
p0_amp | 0.00150146 | 2.7501e-04 | (18.32%) | 0.001488 | 1.0000e-20 | inf | True | |
p0_mu | 61.9278246 | 2.6058e-05 | (0.00%) | 61.927800309876424 | 61.9178003 | 61.9378003 | True | |
p0_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p0_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p0_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p0_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p0_eta_m1 |
p0_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p0_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p0_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p0_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p0_eta_p1 |
p0_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p0_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p1_amp | 0.00103564 | 2.4441e-04 | (23.60%) | 0.000496 | 1.0000e-20 | inf | True | |
p1_mu | 61.9320845 | 3.0529e-05 | (0.00%) | 61.93202053070152 | 61.9220205 | 61.9420205 | True | |
p1_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p1_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p1_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p1_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p1_eta_m1 |
p1_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p1_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p1_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p1_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p1_eta_p1 |
p1_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p1_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p2_amp | 0.14644042 | 0.00234571 | (1.60%) | 0.15648800000000002 | 1.0000e-20 | inf | True | |
p2_mu | 61.9343881 | 2.1401e-06 | (0.00%) | 61.93436923761443 | 61.9243692 | 61.9443692 | True | |
p2_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p2_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p2_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p2_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p2_eta_m1 |
p2_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p2_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p2_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p2_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p2_eta_p1 |
p2_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p2_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p3_amp | 0.03514849 | 0.00115474 | (3.29%) | 0.031992 | 1.0000e-20 | inf | True | |
p3_mu | 61.9436535 | 4.1398e-06 | (0.00%) | 61.943617703998214 | 61.9336177 | 61.9536177 | True | |
p3_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p3_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p3_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p3_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p3_eta_m1 |
p3_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p3_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p3_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p3_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p3_eta_p1 |
p3_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p3_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p4_amp | 1.24818856 | 0.00677766 | (0.54%) | 1.0294480000000001 | 1.0000e-20 | inf | True | |
p4_mu | 61.9470109 | 6.6772e-07 | (0.00%) | 61.946994300285866 | 61.9369943 | 61.9569943 | True | |
p4_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p4_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p4_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p4_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p4_eta_m1 |
p4_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p4_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p4_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p4_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p4_eta_p1 |
p4_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p4_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p5_amp | 0.05774996 | 0.00148342 | (2.57%) | 0.050095999999999995 | 1.0000e-20 | inf | True | |
p5_mu | 61.9495577 | 3.2400e-06 | (0.00%) | 61.94952680789496 | 61.9395268 | 61.9595268 | True | |
p5_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p5_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p5_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p5_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p5_eta_m1 |
p5_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p5_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p5_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p5_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p5_eta_p1 |
p5_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p5_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p6_amp | 0.95282658 | 0.00592393 | (0.62%) | 0.8422080000000001 | 1.0000e-20 | inf | True | |
p6_mu | 61.9566396 | 7.6984e-07 | (0.00%) | 61.95661076349748 | 61.9466108 | 61.9666108 | True | |
p6_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p6_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p6_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p6_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p6_eta_m1 |
p6_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p6_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p6_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p6_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p6_eta_p1 |
p6_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p6_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False | |
p7_amp | 0.00100777 | 2.5608e-04 | (25.41%) | 0.001488 | 1.0000e-20 | inf | True | |
p7_mu | 61.9590166 | 3.6227e-05 | (0.00%) | 61.95899664282278 | 61.9489966 | 61.9689966 | True | |
p7_sigma | 8.3414e-05 | 0.00000000 | (0.00%) | 8.341444351311295e-05 | 0.00000000 | 0.00508341 | False | |
p7_theta | 0.72471396 | 0.00000000 | (0.00%) | 0.724713961354256 | 0.00000000 | 1.00000000 | False | |
p7_eta_m1 | 0.92019054 | 0.00000000 | (0.00%) | 0.9201905356472759 | 0.00000000 | 1.00000000 | False | |
p7_eta_m2 | 0.07980946 | 0.00000000 | (0.00%) | 0.07980946435272407 | 0.00000000 | 1.00000000 | False | 1-p7_eta_m1 |
p7_tau_m1 | 4.4900e-05 | 0.00000000 | (0.00%) | 4.490011233364427e-05 | 1.0000e-12 | 0.05000000 | False | |
p7_tau_m2 | 1.7683e-04 | 0.00000000 | (0.00%) | 0.0001768253599220442 | 1.0000e-12 | 0.05000000 | False | |
p7_eta_p1 | 0.79009179 | 0.00000000 | (0.00%) | 0.7900917915552933 | 0.00000000 | 1.00000000 | False | |
p7_eta_p2 | 0.20990821 | 0.00000000 | (0.00%) | 0.2099082084447067 | 0.00000000 | 1.00000000 | False | 1-p7_eta_p1 |
p7_tau_p1 | 1.2412e-04 | 0.00000000 | (0.00%) | 0.00012412456123840068 | 1.0000e-12 | 0.05000000 | False | |
p7_tau_p2 | 4.0762e-04 | 0.00000000 | (0.00%) | 0.00040761699179939085 | 1.0000e-12 | 0.05000000 | False |